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Abstract

This is an extended abstract from a talk at the Oberwolfach workshop “Subfactors
and Applications” in October 2019. It summarizes some results from [2] (joint work
with Roberto Conti) and [5, 4].

The Yang-Baxter equation is a cubic equation for a linear map Re VRV -V RV
on the tensor square of a vector space V', namely

(Re1)(1®R)(R®1)=(1®R)(R®1)(1®R), (YBE)

where 1 is the identity on V. This equation and its variants come from quantum physics,
but also play a central role in various branches of mathematics, for instance in knot theory,
quantum groups/Hopf algebras, and braid groups. Further recent interest in the solutions
of the YBE stems from topological quantum computing [6].

Despite this widespread interest in the YBE, no satisfactory understanding of its so-
lutions has been reached. In this talk, a new approach to the YBE was presented, based
on operator algebras and subfactors [2]. We restrict to the case of most interest in appli-
cations, namely the case where V is a finite-dimensional Hilbert space and R is unitary.
Such “R-matrices” exist in any dimension d = dim V', simple examples being the identity 1
on V&V, the tensor flip F(v®@w) = w®wv, diagonal R-matrices, and Gaussian R-matrices.
The (unknown) set of all R-matrices of dimension d is denoted R(d).

The general strategy of our approach is to start from an arbitrary R-matrix R € R(d)
with base space V' and derive operator-algebraic data (such as endomorphisms, subfactors,
indices) from it that inform us about R. The main structural elements of our approach
can be summarized in the following diagram:

pWN) < N
U U
©(Lr) C Lr < By (%)
N N
ArRWN ) C N
Starting at the top of the diagram, A is the hyperfinite II; factor realised as an infinite

tensor product N = &®,,>1 EndV, weakly closed w.r.t. the normalised trace 7 = &),,>1 TrTV,
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and equipped with the shift ¢ : N' = N, p(z) = 1 ® 2. We identify finite tensor powers
End V®" with their natural embeddings into A/, so that R € N and the YBE reads
p(R)Ro(R) = Rp(R)R.

The second line of the diagram is about the braid group structure: As is well known,
any R € R(d) defines a group homomorphism pp from the infinite braid group By into the
unitary group of A/ by mapping the standard generators by, n € N, of By, to ¢" 1 (R) € N.
The von Neumann algebra generated by this representation is denoted Lg.

The third line of the diagram introduces the Yang-Bazter endomorphism Ag € End N.
It is defined in such a way that it restricts to the shift ¢ on N. Explicitely,

AR N = N, Ar(x) = vxiio%lR'-‘gpn(R)xgon(R*)---R*. (xx)
This definition is natural also from the point of view of the Cuntz algebra'. As particular
examples, we note that the identity R-matrix gives the identity endomorphism, \; = idas,
and the flip F' gives the canonical endomorphism, A\p = ¢.

Let us list a few results from [2] (joint work with Roberto Conti):

(1) Lgr is a factor (II; for non-trivial R). This provides us with three subfactors (I)
Ar(N) C N, (1) ¢(LR) C LR, and (III) Lg C N derived from R.

(2) Subfactors (I),(II) have always finite index < d?, but (III) may have infinite index.
Its relative commutant coincides with the fixed point algebra N 2.

(3) The subfactors (I), (II) can be iterated by taking powers of A and ¢, respectively.
One has R € *(Lr)' N Lr C A4(N) NN. Hence, for any non-trivial R-matrix, A%
is reducible and g is not an automorphism [1].

(4) Both squares in (x) are commuting squares. Denoting the 7-preserving conditional
expectation N' — Ar(N) by Eg, and the associated left inverse of Az by ¢pr :=
Ag! o ER, this implies ¢p(z) = ¢r(z), x € Lg.

An interesting object to consider is ¢r(R). This is an element of ¢(Lg)' N Lk, which
thanks to (4) coincides with the (normalised) left partial trace ¢ (R) of R. We therefore
have explicit elements of the relative commutant, and a connection from operator-algebraic
structures to concrete properties of R. One finds [2]:

(5) Let R € R. Then the left and right partial traces of R coincide and are normal
elements of End V.

(6) Define the character Tg of an R-matrix as the map 7r : Boo — C, 7 := 70 pg. If
two R-matrices R, S € R(d) have the same character, then ¢r(R) and ¢g(S) are
unitarily equivalent.

(7) Any R-matrix with spectrum contained in a disc of radius less than 1 — 27%/4 is
trivial?.

Viewing R € R(d) as a unitary in Oq4 yields a canonically associated endomorphism Ag of O4. This
endomorphism gives (%) by extension to a type III; /4 factor M D N and restriction.
2This result has its origin in an estimate on the Jones index [NV : Ar(N)] in terms of ¢r(R).



Item (6) suggests to consider R-matrices up to the natural equivalence relation R ~ S
given by coinciding characters and dimensions of R-matrices. Then ¢r(R) is an invariant
for ~, and in the involutive case (R? = 1), it is even a complete invariant: R ~ S <=
dr(R) = ¢s(S) [4]. In the general non-involutive case, the partial trace is not a complete
invariant.

As the last section in this overview, let us consider the problem of classifying all R-
matrices up to the equivalence ~ and announce some results from the upcoming article [5].
We consider here the case that the spectrum of R has cardinality 2, and normalise it to
o(R) ={-1,q}, |¢| =1, ¢ # —1. In this situation, the representation pg factors through

the Hecke algebra H.(q), and we moreover have [5]:

(8) If R € R(d) has no two opposite eigenvalues p, —p in its spectrum, then ¢(Lr) C Lg
is irreducible and 7p is a (positive) Markov trace.

Hence for ¢ # 1, any R-matrix gives a positive Markov trace on Hy(q). We may
therefore use Wenzl’s classification of positive Markov traces on Hs(q) [7]. Recall that
his results state in particular that for a positive Markov trace to exist, one must have
q € {1,627”/4 : 0 € {4,5,...}}, and at fixed ¢, there exist finitely many possible Markov
traces. In our Yang-Baxter setting, these possibilities are severely restricted [5]:

(9) Let R be an R-matrix with spectrum {—1, ¢}, ¢ # 1, and eigen projection P for the
eigenvalue —1. Then q € {=£i,e'™/3}. If ¢ = =i, then 7(P) = %, and if ¢ = /3,
then 7(P) = {3, 3, 2}. Two such R-matrices R, S are equivalent (in the sense of ~)
iff they have the same spectrum (g), dimension (d), and trace (7(P)).

The above result does mot imply that all the possible combinations of eigenvalues ¢
and traces 7(P) are indeed realised. We have found explicit R-matrices realising the
combinations (¢ = +i, 7(P) = 3), (¢ = /3 r(P) = 1), (¢ = /3 r(P) = 2) and
conjecture that the last possibility, (¢ = /™3, 7(P) = 1), is not realised by any R-matrix.
This is in line with observations made by Galindo, Hong, and Rowell [3], but so far no
proof of this conjecture exists.

It is instructive to compare these findings with the situation at ¢ = 1, which is com-
pletely different. For g # 1, we always have irreducible p(Lr) C Lg, and the equivalence
takes a simple form (it is given by the three parameters d, g, 7(P)). For ¢ = 1, on the other
hand, p(Lr) C Lg is reducible except for the special cases R ~ £1,+F, and the equiv-
alence is more involved (it is given by the unitary equivalence class of ¢r(R)). The case
q = 1 corresponds to R being involutive and ppr factoring through the infinite symmetric
group. In that case, a complete and explicit classification of R-matrices up to equivalence
exists: R-matrices are parameterised by pairs of Young diagrams with d boxes in total,
corresponding to the positive and negative eigenvalues of ¢r(R) [4]. We also mention that
in this case, the index [Lr : ¢(LR)] is a rational typically non-integer number.
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