Subfactors and unitary R-matrices

Gandalf Lechner*

November 11, 2019

Abstract

This is an extended abstract from a talk at the Oberwolfach workshop "Subfactors and Applications" in October 2019. It summarizes some results from [2] (joint work with Roberto Conti) and [5, 4].

The Yang-Baxter equation is a cubic equation for a linear map $R \in V \otimes V \to V \otimes V$ on the tensor square of a vector space V, namely

$$(R \otimes 1)(1 \otimes R)(R \otimes 1) = (1 \otimes R)(R \otimes 1)(1 \otimes R), \tag{YBE}$$

where 1 is the identity on V. This equation and its variants come from quantum physics, but also play a central role in various branches of mathematics, for instance in knot theory, quantum groups/Hopf algebras, and braid groups. Further recent interest in the solutions of the YBE stems from topological quantum computing [6].

Despite this widespread interest in the YBE, no satisfactory understanding of its solutions has been reached. In this talk, a new approach to the YBE was presented, based on operator algebras and subfactors [2]. We restrict to the case of most interest in applications, namely the case where V is a finite-dimensional Hilbert space and R is unitary. Such "R-matrices" exist in any dimension $d = \dim V$, simple examples being the identity 1 on $V \otimes V$, the tensor flip $F(v \otimes w) = w \otimes v$, diagonal R-matrices, and Gaussian R-matrices. The (unknown) set of all R-matrices of dimension d is denoted $\mathcal{R}(d)$.

The general strategy of our approach is to start from an arbitrary R-matrix $R \in \mathcal{R}(d)$ with base space V and derive operator-algebraic data (such as endomorphisms, subfactors, indices) from it that inform us about R. The main structural elements of our approach can be summarized in the following diagram:

$$\varphi(\mathcal{N}) \subset \mathcal{N}
\cup \qquad \cup
\varphi(\mathcal{L}_R) \subset \mathcal{L}_R \stackrel{\rho_R}{\longleftarrow} B_{\infty}
\cap \qquad \cap
\lambda_R(\mathcal{N}) \subset \mathcal{N}$$
(*)

Starting at the top of the diagram, \mathcal{N} is the hyperfinite Π_1 factor realised as an infinite tensor product $\mathcal{N} = \bigotimes_{n \geq 1} \operatorname{End} V$, weakly closed w.r.t. the normalised trace $\tau = \bigotimes_{n \geq 1} \frac{\operatorname{Tr}_V}{d}$,

^{*}Cardiff University, School of Mathematics, Cardiff, CF24 4AG, UK. E-mail: LechnerG@Cardiff.ac.uk

and equipped with the shift $\varphi : \mathcal{N} \to \mathcal{N}$, $\varphi(x) = 1 \otimes x$. We identify finite tensor powers End $V^{\otimes n}$ with their natural embeddings into \mathcal{N} , so that $R \in \mathcal{N}$ and the YBE reads $\varphi(R)R\varphi(R) = R\varphi(R)R$.

The second line of the diagram is about the braid group structure: As is well known, any $R \in \mathcal{R}(d)$ defines a group homomorphism ρ_R from the infinite braid group B_{∞} into the unitary group of \mathcal{N} by mapping the standard generators b_n , $n \in \mathbb{N}$, of B_{∞} to $\varphi^{n-1}(R) \in \mathcal{N}$. The von Neumann algebra generated by this representation is denoted \mathcal{L}_R .

The third line of the diagram introduces the Yang-Baxter endomorphism $\lambda_R \in \operatorname{End} \mathcal{N}$. It is defined in such a way that it restricts to the shift φ on \mathcal{N} . Explicitly,

$$\lambda_R : \mathcal{N} \to \mathcal{N}, \qquad \lambda_R(x) := \underset{n \to \infty}{\text{w-lim}} R \cdots \varphi^n(R) x \varphi^n(R^*) \cdots R^*.$$
 (**)

This definition is natural also from the point of view of the Cuntz algebra¹. As particular examples, we note that the identity R-matrix gives the identity endomorphism, $\lambda_1 = \mathrm{id}_{\mathcal{N}}$, and the flip F gives the canonical endomorphism, $\lambda_F = \varphi$.

Let us list a few results from [2] (joint work with Roberto Conti):

- (1) \mathcal{L}_R is a factor (II₁ for non-trivial R). This provides us with three subfactors (I) $\lambda_R(\mathcal{N}) \subset \mathcal{N}$, (II) $\varphi(\mathcal{L}_R) \subset \mathcal{L}_R$, and (III) $\mathcal{L}_R \subset \mathcal{N}$ derived from R.
- (2) Subfactors (I),(II) have always finite index $\leq d^2$, but (III) may have infinite index. Its relative commutant coincides with the fixed point algebra \mathcal{N}^{λ_R} .
- (3) The subfactors (I), (II) can be iterated by taking powers of λ_R and φ , respectively. One has $R \in \varphi^2(\mathcal{L}_R)' \cap \mathcal{L}_R \subset \lambda_R^2(\mathcal{N})' \cap \mathcal{N}$. Hence, for any non-trivial R-matrix, λ_R^2 is reducible and λ_R is not an automorphism [1].
- (4) Both squares in (*) are commuting squares. Denoting the τ -preserving conditional expectation $\mathcal{N} \to \lambda_R(\mathcal{N})$ by E_R , and the associated left inverse of λ_R by $\phi_R := \lambda_R^{-1} \circ E_R$, this implies $\phi_R(x) = \phi_F(x), x \in \mathcal{L}_R$.

An interesting object to consider is $\phi_R(R)$. This is an element of $\varphi(\mathcal{L}_R)' \cap \mathcal{L}_R$, which thanks to (4) coincides with the (normalised) left partial trace $\phi_F(R)$ of R. We therefore have explicit elements of the relative commutant, and a connection from operator-algebraic structures to concrete properties of R. One finds [2]:

- (5) Let $R \in \mathcal{R}$. Then the left and right partial traces of R coincide and are normal elements of End V.
- (6) Define the character τ_R of an R-matrix as the map $\tau_R : B_\infty \to \mathbb{C}$, $\tau_R := \tau \circ \rho_R$. If two R-matrices $R, S \in \mathcal{R}(d)$ have the same character, then $\phi_R(R)$ and $\phi_S(S)$ are unitarily equivalent.
- (7) Any R-matrix with spectrum contained in a disc of radius less than $1 2^{-1/4}$ is trivial².

¹Viewing $R \in \mathcal{R}(d)$ as a unitary in \mathcal{O}_d yields a canonically associated endomorphism λ_R of \mathcal{O}_d . This endomorphism gives (**) by extension to a type $III_{1/d}$ factor $\mathcal{M} \supset \mathcal{N}$ and restriction.

²This result has its origin in an estimate on the Jones index $[\mathcal{N}:\lambda_R(\mathcal{N})]$ in terms of $\phi_R(R)$.

Item (6) suggests to consider R-matrices up to the natural equivalence relation $R \sim S$ given by coinciding characters and dimensions of R-matrices. Then $\phi_R(R)$ is an invariant for \sim , and in the involutive case $(R^2 = 1)$, it is even a *complete* invariant: $R \sim S \iff \phi_R(R) \cong \phi_S(S)$ [4]. In the general non-involutive case, the partial trace is not a complete invariant.

As the last section in this overview, let us consider the problem of classifying all R-matrices up to the equivalence \sim and announce some results from the upcoming article [5]. We consider here the case that the spectrum of R has cardinality 2, and normalise it to $\sigma(R) = \{-1, q\}, |q| = 1, q \neq -1$. In this situation, the representation ρ_R factors through the Hecke algebra $H_{\infty}(q)$, and we moreover have [5]:

(8) If $R \in \mathcal{R}(d)$ has no two opposite eigenvalues μ , $-\mu$ in its spectrum, then $\varphi(\mathcal{L}_R) \subset \mathcal{L}_R$ is irreducible and τ_R is a (positive) Markov trace.

Hence for $q \neq 1$, any R-matrix gives a positive Markov trace on $H_{\infty}(q)$. We may therefore use Wenzl's classification of positive Markov traces on $H_{\infty}(q)$ [7]. Recall that his results state in particular that for a positive Markov trace to exist, one must have $q \in \{1, e^{2\pi i/\ell} : \ell \in \{4, 5, \ldots\}\}$, and at fixed ℓ , there exist finitely many possible Markov traces. In our Yang-Baxter setting, these possibilities are severely restricted [5]:

(9) Let R be an R-matrix with spectrum $\{-1,q\}$, $q \neq 1$, and eigen projection P for the eigenvalue -1. Then $q \in \{\pm i, e^{i\pi/3}\}$. If $q = \pm i$, then $\tau(P) = \frac{1}{2}$, and if $q = e^{\pm i\pi/3}$, then $\tau(P) = \{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\}$. Two such R-matrices R, S are equivalent (in the sense of \sim) iff they have the same spectrum (q), dimension (d), and trace $(\tau(P))$.

The above result does *not* imply that all the possible combinations of eigenvalues q and traces $\tau(P)$ are indeed realised. We have found explicit R-matrices realising the combinations $(q=\pm i,\,\tau(P)=\frac{1}{2}),\,(q=e^{i\pi/3},\,\tau(P)=\frac{1}{3}),\,(q=e^{i\pi/3},\,\tau(P)=\frac{2}{3})$ and conjecture that the last possibility, $(q=e^{i\pi/3},\,\tau(P)=\frac{1}{2})$, is not realised by any R-matrix. This is in line with observations made by Galindo, Hong, and Rowell [3], but so far no proof of this conjecture exists.

It is instructive to compare these findings with the situation at q=1, which is completely different. For $q \neq 1$, we always have irreducible $\varphi(\mathcal{L}_R) \subset \mathcal{L}_R$, and the equivalence takes a simple form (it is given by the three parameters $d, q, \tau(P)$). For q=1, on the other hand, $\varphi(\mathcal{L}_R) \subset \mathcal{L}_R$ is reducible except for the special cases $R \sim \pm 1, \pm F$, and the equivalence is more involved (it is given by the unitary equivalence class of $\phi_R(R)$). The case q=1 corresponds to R being involutive and ρ_R factoring through the infinite symmetric group. In that case, a complete and explicit classification of R-matrices up to equivalence exists: R-matrices are parameterised by pairs of Young diagrams with d boxes in total, corresponding to the positive and negative eigenvalues of $\phi_R(R)$ [4]. We also mention that in this case, the index $[\mathcal{L}_R : \varphi(\mathcal{L}_R)]$ is a rational typically non-integer number.

References

- [1] R. Conti, J. Hong, W. Szymanski. Endomorphisms of the Cuntz Algebras. *Banach Center Publ.* **96**, 8197, 2012
- [2] R. Conti, G. Lechner. Yang-Baxter endomorphisms. Preprint 1909.04127, 2019
- [3] C. Galindo, S. Hong, E. Rowell. Generalized and quasi-localizations of braid group representations *Int. Math. Res. Not.* **3**, 693-731, 2013
- [4] G. Lechner, U. Pennig, and S. Wood. Yang-Baxter representations of the infinite symmetric group. Adv. Math., page 106769, 2019
- [5] G. Lechner. Classification of unitary R-matrices. To appear, 2019
- [6] E. Rowell, Z. Wang. Mathematics of topological quantum computing *Bull. Amer. Math. Soc.* **55** (2), 183–238, 2018
- [7] H. Wenzl. Hecke algebras of type A_n and subfactors. *Invent. Math.*, 92(2), 349383, 1988