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Abstract

Within the algebraic setting of quantum field theory, a condition is given
which implies that the intersection of algebras generated by field operators
localized in wedge–shaped regions of two–dimensional Minkowski space is
non–trivial; in particular, there exist compactly localized operators in such
theories which can be interpreted as local observables. The condition is
based on spectral (nuclearity) properties of the modular operators affiliated
with wedge algebras and the vacuum state and is of interest in the algebraic
approach to the formfactor program, initiated by Schroer. It is illustrated
here in a simple class of examples.

1 Introduction

There is growing evidence that algebraic quantum field theory [23] not only
is useful in structural analysis but provides also a framework for the con-
struction of models. Basic ingredients in this context are, on the one hand,
the algebras affiliated with wedge shaped regions in Minkowski space, called
wedge algebras for short. On the other hand there enter the modular groups
corresponding to these algebras and the vacuum state by Tomita–Takesaki
theory.

The wedge algebras are distinguished by the fact that the associated
modular groups can be interpreted as unitary representations of specific
Poincaré transformations. This fact was established first by Bisognano and
Wichmann in the Wightman framework of quantum field theory [4] and,
more recently, by Borchers in the algebraic setting [6], cf. also [22, 32]. It
triggered attempts to construct families of such algebras directly within the
algebraic framework [9,31].

A particularly interesting development was initiated by Schroer [35] who,
starting from a given factorizing scattering matrix in two spacetime dimen-
sions, recognized how one may reconstruct from these data a family of wedge
algebras satisfying locality. A complete construction of these algebras for
a simple class of scattering matrices was given in [27]. These results are
a first important step in an algebraic approach to the formfactor program,
i.e. the reconstruction of quantum fields from a scattering matrix [3,26,38];
for more recent progress on this issue see also [1, 2, 17].
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The second step in this approach consists in showing that, besides field
operators localized in wedges, there appear also local observables, i.e. opera-
tors which are localized in compact spacetime regions, such as double cones.
As any double cone in two dimensions is the intersection of two opposite
wedges, local observables ought to be elements of the intersection of wedge
algebras. The question of whether these intersections are non–trivial turned
out to be a difficult one, however, and has not yet been settled. Some ideas
as to how this problem may be tackled in models are discussed in [37].

It is the aim of the present letter to point out an alternative strategy
for the proof of the non–triviality of the intersections of wedge algebras. By
combining results scattered in the literature and casting them into a simple
condition, we will show that the non–triviality of these intersections can be
deduced from spectral (nuclearity) properties of the modular operators on
certain specific subspaces of the Hilbert space. Thus the algebraic problem
of determining intersections of wedge algebras amounts to a problem in
spectral analysis which seems to be better tractable.

The subsequent section contains an abstract version of our nuclearity
condition and a discussion of its consequences in a general algebraic setting.
In Section 3 these results are carried over to a family of theories with fac-
torizing S–matrix in two–dimensional Minkowski space. It is shown that
compactly localized operators exist in any theory complying with our con-
dition. Section 4 illustrates the type of computations needed to verify this
condition in a simple example. The article closes with a brief outlook.

2 Modular nuclearity and its consequences

In this section we present our nuclearity condition in a general setting, ex-
tracted from the more concrete structures in field theoretic models, and
discuss its implications. We begin by introducing our notation and listing
our assumptions.

(a) Let H be a Hilbert space and let U be a continuous unitary representa-
tion of R

2 acting on H. Choosing proper coordinates on R
2, x = (x0, x1),

the joint spectrum of the corresponding generators (P0, P1) of U is contained
in the cone V+

.
= {(p0, p1) ∈ R

2 : p0 ≥ |p1|} and there is an (up to a phase
unique) unit vector Ω ∈ H which is invariant under the action of U .

(b) There is a von Neumann algebra M ⊂ B(H) such that for each element
x of the wedge W

.
= {y ∈ R

2 : |y0| + y1 < 0} the adjoint action of the
unitaries U(x) induces endomorphisms of M,

M(x)
.
= U(x)MU(x)−1 ⊂ M, x ∈ W. (2.1)

Moreover, Ω is cyclic and separating for M.

It is well known that, under these circumstances, the algebraic properties
of M are strongly restricted. As a matter of fact, disregarding the trivial
possibility that H is one–dimensional and M = C, the following result has
been established in [28, Thm. 3].

Lemma 2.1. Under the preceding two conditions the algebra M is a factor
of type III1 according to the classification of Connes.
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It immediately follows from this result that the algebras M(x) are factors
of type III1 as well. Little is known, however, about the algebraic structure
of the relative commutants M(x)′ ∩ M of M(x) in M, x ∈ W . Even
the question of whether these relative commutants are non–trivial has not
been settled in this general setting. Yet this question turns out to have
an affirmative answer and, as a matter of fact, the algebraic structures are
completely fixed if the inclusions (2.1) are split, i.e. if for each x ∈ W there
is a factor N of type I∞ such that

M(x) ⊂ N ⊂ M. (2.2)

First, the split property implies that M is isomorphic to the unique [24]
hyperfinite factor of type III1. We briefly recall here the argument: As Ω is
cyclic and separating for M, and hence for M(x), this is also true for N . It
follows that N , being of type I∞, is separable in the ultraweak topology and
consequently H is separable, cf. [21, Prop. 1.2]. Now, as U is continuous, M
is continuous from the inside, M =

∨
x∈W M(x). The split property thus

implies that M can be approximated from the inside by separable type I∞
factors and therefore is hyperfinite, cf. [11, Prop. 3.1]. Knowing also that it
is of type III1, the assertion follows.

Secondly, the split property implies that M(x)′ ∩ M, x ∈ W , is iso-
morphic to the hyperfinite factor of type III1 as well. This can be seen as
follows [21]. On a separable Hilbert space H, any factor of type III has cyclic
and separating vectors [34, Cor. 2.9.28]. Moreover, for any von Neumann
algebra on H with a cyclic and a separating vector there exists a dense Gδ

set of vectors which are both, cyclic and separating [20]. Now, taking into
account that N is isomorphic to B(H), the relative commutant M(x)′ ∩ N
of the type III factor M(x) in N is (anti)isomorphic to M(x) by Tomita–
Takesaki theory. It is therefore of type III and has cyclic vectors in H. This
holds a fortiori for M(x)′ ∩ M ⊃ M(x)′ ∩ N and, as Ω is separating for
M, the relative commutant M(x)′ ∩ M has a dense Gδ set of cyclic and
separating vectors. But the intersection of a finite number of dense Gδ sets
is non–empty. So we conclude that the triple M, M(x) and M(x)′ ∩ M
has a joint cyclic and separating vector in H. The inclusion (2.2) is thus a
standard split inclusion according to the terminology in [21]. In particular,
there is a spatial isomorphism mapping M(x)

∨
M′ on H onto M(x)⊗M′

on H ⊗ H [19]. By taking commutants, we conclude that M(x)′ ∩ M is
isomorphic to M(x)′ ⊗ M, x ∈ W . The statement about the algebraic
structure of the relative commutant then follows.

It seems difficult, however, to establish the existence of intermediate
type I∞ factors N in the inclusions (2.2) for concretely given {M, U,H}, and
this may be the reason why this strategy of establishing the non–triviality of
relative commutants has been discarded in [37]. Yet the situation is actually
not hopeless, the interesting point being that the existence of the desired
factors can be derived from spectral properties of the modular operator ∆
affiliated with the pair (M,Ω). Recalling that a linear map from a Banach
space into another one is said to be nuclear if it can be decomposed into
a series of maps of rank one whose norms are summable, we extract the
following pertinent condition from [12].
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(c) Modular Nuclearity Condition: For any given x ∈ W the map

M 7→ ∆1/4MΩ, M ∈ M(x), (2.3)

is nuclear. Equivalently, since ∆1/4 is invertible, the image of the unit ball
in M(x) under this map is a nuclear subset of H.

Since Ω is cyclic and separating for M and the algebras M(x), M both
are factors, it follows from the modular nuclearity condition (c) that the
inclusions M(x) ⊂ M, x ∈ W , are split [12, Thm. 3.3]. Conversely, if these
inclusions are split, the map (2.3) has to be compact, at least. Thus a proof
of the split property (2.2) amounts to a spectral analysis of the operator ∆1/4

on the subspaces M(x)Ω ⊂ H. This task is, as we shall see, manageable in
concrete applications. We summarize the results of the preceding discussion
in the following proposition.

Proposition 2.2. Let {M, U,H} be a triple satisfying conditions (a), (b)
and (c), stated above. Then, for x ∈ W ,

(i) the inclusion M(x) ⊂ M is split;

(ii) the relative commutant M(x)′ ∩M is isomorphic to the unique hyper-
finite type III1 factor. In particular, it has cyclic and separating vectors.

We conclude this section by noting that any triple {M, U,H} as in the
preceding proposition can be used to construct a non–trivial Poincaré co-
variant net of local algebras on two–dimensional Minkowski space R

2. Fol-
lowing closely the discussion in [5, 6], we first note that the modular group
∆is, s ∈ R, and the modular conjugation J affiliated with (M,Ω) can be
interpreted as representations of proper Lorentz transformations Λ (having
determinant one). More specifically, if Λ is any such transformation and
Λ = (−1)σB(θ) its polar decomposition, where σ ∈ {0, 1} and B(θ) is a
boost with rapidity θ ∈ R, one can show that

U(x,Λ)
.
= U(x)Jσ ∆iθ/2π (2.4)

defines a continuous (anti)unitary representation of the proper Poincaré
group [5]. Moreover, Ω is invariant under the action of these operators
and may thus be interpreted as a vacuum state. Setting R(ΛW + x)

.
=

U(x,Λ)MU(x,Λ)−1, one obtains a local (as a matter of fact, Haag–dual)
Poincaré covariant net of wedge algebras on R

2. Denoting the double cones
in R

2 by Cx,y
.
= (−W +x)∩ (W +y), x−y ∈ W , the corresponding algebras

R(Cx,y)
.
= R(W + x)′ ∩R(−W + y)′ = M(x)′ ∩M(y) (2.5)

are non–trivial according to the preceding proposition. As was shown in [5],
they form a local net on R

2 which is relatively local to the wedge algebras
and transforms covariantly under the adjoint action of U(x,Λ). It may thus
be interpreted as a net of local observables. The vacuum vector Ω need
not be cyclic for the local algebras, however. In fact, thinking of theories
exhibiting solitonic excitations of Ω which are localized in wedge regions,
this may also not be expected in general.
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3 Applications to field theoretic models

We carry over now the results of the preceding section to the framework of
two–dimensional models and indicate their significance for the formfactor
program, i.e. the reconstruction of local observables and fields from a given
factorizing scattering matrix.

For the sake of concreteness, we restrict attention here to the theory of
a single massive particle with given two–particle scattering function S2, as
considered in [35,36] and described in more detail in [27]. The Hilbert space
of the theory is conveniently represented as the S2–symmetrized Fock space
H =

⊕∞
n=0 Hn. Here the subspace H0 consists of multiples of the vacuum

vector Ω and, using the parameterization of the mass shell by the rapidity
θ,

p(θ) = m
(
ch(θ), sh(θ)

)
, θ ∈ R, (3.1)

the single particle space H1 can be identified with the space of square inte-
grable functions θ 7→ Ψ1(θ) with norm given by

‖Ψ1‖
2 =

∫
dθ |Ψ1(θ)|2. (3.2)

The elements of the n–particle space Hn are represented by square integrable
functions θ1 . . . θn 7→ Ψn(θ1, . . . , θn) which are S2–symmetric,

Ψn(θ1, . . . , θi+1, θi, . . . , θn) = S2(θi−θi+1)Ψn(θ1, . . . , θi, θi+1, . . . , θn). (3.3)

Here ζ 7→ S2(ζ) is the scattering function which is continuous and bounded
on the strip {ζ ∈ C : 0 ≤ Im ζ ≤ π}, analytic in its interior and satisfies, for
θ ∈ R, the unitarity and crossing relations

S2(θ)−1 = S2(θ) = S2(−θ) = S2(θ + iπ). (3.4)

On H there acts a continuous unitary representation U of the proper or-
thochronous Poincaré group, given by

(
U(x,B(θ))Ψ

)
n(θ1, . . . , θn)

.
= eix

∑n
j=1

p(θj) Ψn(θ1 − θ, . . . , θn − θ). (3.5)

It satisfies the relativistic spectrum condition, i.e. the joint spectrum of the
generators P = (P0, P1) of the translations U(R2, 1) is contained in V+.
Moreover, there is an antiunitary operator J on H, representing the PCT
symmetry. It is given by

(
J Ψ

)
n(θ1, . . . , θn)

.
= Ψn(θn, . . . , θ1). (3.6)

As in the case of the bosonic and fermionic Fock spaces, one can define
creation and annihilation operators z†(θ), z(θ) (in the sense of operator
valued distributions) on the dense subspace D ⊂ H of vectors with a finite
particle number. They are hermitian conjugates with respect to each other
and satisfy the Fadeev–Zamolodchikov relations

z†(θ)z†(θ′) = S2(θ − θ′) z†(θ′)z†(θ), z(θ)z(θ′) = S2(θ − θ′) z(θ′)z(θ),

z(θ)z†(θ′) = S2(θ
′ − θ) z†(θ′)z(θ) + δ(θ − θ′) 1. (3.7)

5



Their action on D is fixed by the equations

(z†(θ1) . . . z†(θn)Ω,Ψ) = (n!)1/2 Ψn(θ1, . . . , θn), z(θ)Ω = 0. (3.8)

With the help of these creation and annihilation operators one can define
on D a field φ, setting

φ(f)
.
= z†(f+) + z(f−), f ∈ S(R2), (3.9)

where

f±(θ)
.
= (2π)−1

∫
dxf(x) e±ip(θ)x (3.10)

and we adopt the convention that, both, z†( · ) and z( · ) are complex linear
on the space of test functions.

It has been shown in [27] that φ transforms covariantly under the adjoint
action of the proper orthochronous Poincaré group,

U(x,B)φ(f)U(x,B)−1 = φ(fx,B), (3.11)

where fx,B(y)
.
= f(B−1(y − x)), y ∈ R

2. Moreover, φ is real, φ(f)∗ ⊃ φ(f),
and each vector in D is entire analytic for the operators φ(f). Since D
is stable under their action, these operators are essentially selfadjoint on
this domain for real f . We mention as an aside that the fields φ(f) are
polarization–free generators in the sense of [7].

Denoting the selfadjoint extensions of φ(f), f real, by the same symbol,
one can define the von Neumann algebras

R(W + x)
.
= {eiφ(f) : suppf ⊂ W + x}′′, x ∈ R

2, (3.12)

where W denotes, as before, the wedge W
.
= {y ∈ R

2 : |y0|+ y1 < 0}. With
the help of the PCT operator J one can also define algebras corresponding
to the opposite wedges,

R(−W − x)
.
= J R(W + x)J, x ∈ R

2. (3.13)

Now, given an arbitrary proper Lorentz transformation Λ with polar
decomposition Λ = (−1)σB, σ ∈ {0, 1}, one obtains a representation of the
proper Poincaré group, setting U(x,Λ)

.
= U(x,B)Jσ . It then follows from

the covariance properties (3.11) of the field that

U(x,Λ)R(±W + y)U(x,Λ)−1 = R(±(−1)σW + Λy + x), (3.14)

taking into account that the wedge W is stable under the action of boosts.
So, by this construction, one arrives at a Poincaré covariant net of wedge
algebras on two–dimensional Minkowski space.

It has been shown in [27] that this net is local,

R(±W + x) ⊂ R(∓W + x)′, (3.15)

and that Ω is cyclic and separating for the wedge algebras (and hence for
their commutants).

The triple {R(W ), U(R2, 1),H} satisfies conditions (a) and (b) given in
the preceding section. More can be said by making use of modular theory
and certain specific domain properties of the field φ.
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Proposition 3.1. Let R(W ) be the algebra defined above. Then

(i) the modular group and conjugation affiliated with (R(W ),Ω) are given
by R ∋ λ 7→ U(0, B(2πλ)) and J , respectively;

(ii) R(W )′ = R(−W ) (Haag duality).

Proof. Let ∆W , JW be the modular operator and conjugation, respectively,
affiliated with (R(W ),Ω). It follows from modular theory that any boost
U(0, B) commutes with ∆W and JW since Ω is invariant and R(W ) is stable
under its (adjoint) action. Hence λ 7→ V (λ)

.
= U(0, B(2πλ))∆−iλ

W is a
continuous unitary representation of R with the latter properties. Moreover,
V (λ) commutes with all boosts U(0, B) and, by a theorem of Borchers [5],
also with all translations U(x, 1). Since the restriction of U to the proper
orthochronous Poincaré group acts irreducibly on H1, one concludes that
V (λ) ↾ H1 = eiλc 1 for fixed real c and any λ ∈ R.

Now, for real f with suppf ⊂ W , φ(f) is a selfadjoint operator affiliated
with R(W ), and the same holds for φλ(f)

.
= V (λ)φ(f)V (λ)−1, λ ∈ R,

because of the stability of R(W ) under the adjoint action of V (λ). So both
operators commute with all elements of R(W )′. Since Ω is invariant under
the action of V (λ)−1 and since φ(f)Ω ∈ H1, the preceding result implies

(
φλ(f) − eiλcφ(f)

)
A′Ω = 0, A′ ∈ R(W )′. (3.16)

It will be shown below that the dense set of vectors R(W )′Ω is a core,
both, for φ(f) and φλ(f). Hence φλ(f) = eiλcφ(f) which, in view of the
selfadjointness of the field operators, is only possible if c = 0. This holds
for any choice of f within the above limitations, so V (λ) acts trivially on
R(W ). Taking also into account that Ω is cyclic for R(W ), one arrives at
V (λ) = 1, λ ∈ R, from which the first part of statement (i) follows.

Similarly, modular theory and the theorem of Borchers mentioned above
imply that the unitary operator I

.
= JW J commutes with all Poincaré trans-

formations U(x,B) and, taking into account relation (3.15), one also has
IR(W )I−1 ⊂ R(W ). Hence, putting φI(f)

.
= Iφ(f)I−1, one finds by the

same reasoning as in the preceding step that φI(f) = φ(f). Thus I = 1,
proving the second part of statement (i). The statement about Haag duality
then follows from the equalities

R(W )′ = JWR(W )JW = JR(W )J = R(−W ). (3.17)

It remains to prove the assertion that R(W )′Ω is a core for the selfadjoint
operators φ(f), φλ(f) and φI(f), respectively. To this end one makes use
of bounds, given in [27], on the action of the field operators on n–particle
states Ψn. One has ‖φ(f)Ψn‖ ≤ cf (n+1)1/2‖Ψn‖, where cf is some constant
depending only on f . Since the field operators change the particle number
at most by ±1, one can proceed from this estimate to corresponding bounds
for Ψ ∈ D, given by ‖φ(f)Ψ‖ ≤ 2cf ‖(N + 1)1/2Ψ‖, where N is the particle
number operator. Recalling that P0 denotes the (positive) generator of the
time translations, it is also clear that m (N + 1) ≤ (P0 + m1). So for
Ψ ∈ D ∩D0, where D0 is the domain of P0, one arrives at the inequalities

‖φ(f)Ψ‖ ≤ 2cf ‖(N + 1)1/2Ψ‖ ≤ 2m−1/2cf ‖(P0 + m1)1/2Ψ‖. (3.18)
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It follows from this estimate by standard arguments that any core for P0 is
also a core for the field operators φ(f). Since the unitary operators V (λ) and
I in the preceding steps were shown to commute with the time translations,
this domain property is also shared by the transformed field operators φλ(f)
and φI(f), respectively.

In order to complete the proof, one has only to show that R(W )′Ω∩D0

is a core for P0. Now R(W )′Ω is mapped into itself by all translations U(x),
x ∈ −W . Hence, taking into account the invariance of Ω under translations,
one finds that f̃(P )R(W )′Ω ⊂ R(W )′Ω ∩ D0 for any test function f with
suppf ⊂ −W . But this space of functions contains elements f such that
f̃(P ) is invertible. Hence (P0 ± i1)f̃(P )R(W )′Ω ⊂ (P0 ± i1)(R(W )′Ω∩D0)
both are dense subspaces of H, proving the statement.

In view of the covariance properties of the net, it is apparent that anal-
ogous statements hold for all wedge algebras. Thus the only point left open
in this reconstruction of a relativistic quantum field theory from scattering
data is the question of whether the wedge algebras contain operators which
can be interpreted as observables localized in finite spacetime regions, such
as the double cones Cx,y

.
= (W + y) ∩ (−W + x), x − y ∈ W . By Einstein

causality, observables localized in Cx,y have to commute with all operators
localized in the adjacent wedges W + x and −W + y. They are therefore
elements of the algebra

R(Cx,y)
.
= R(W + x)′ ∩R(−W + y)′ = R(−W + x) ∩R(W + y). (3.19)

It follows from the properties of the wedge algebras established thus far that
the resulting map C 7→ R(C) from double cones to von Neumann algebras
defines a local and Poincaré covariant net on Minkowski space. So if the
theory describes local observables, the algebras R(C) are to be non–trivial.

At this point the nuclearity condition formulated in Sec. 2 comes in.
Knowing by the preceding proposition the explicit form of the modular
operator affiliated with (R(W ),Ω) and taking into account the invariance
of Ω under spacetime translations, we are led to consider, for given x ∈ W ,
the maps

A 7→ U(0, B(−iπ/2))U(x, 1)AΩ, A ∈ R(W ). (3.20)

Within the present context one then has the following more concrete version
of Proposition 2.2.

Proposition 3.2. Let the maps (3.20) be nuclear, x ∈ W . Then

(i) the net of wedge algebras has the split property;

(ii) for any open double cone C ⊂ R
2 the corresponding algebra R(C) is

isomorphic to the unique hyperfinite factor of type III1. In particular it has
cyclic and separating vectors.

So in order to establish the existence of local operators in the theory,
one needs an estimate of the size of the set of vectors

U(0, B(−iπ/2))U(x, 1)AΩ, A ∈ R(W )1, (3.21)
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i.e. the image of the unit ball R(W )1 under the action of the map (3.20). We
briefly indicate here the steps required in such an analysis which are similar
to those carried out in [8] in an investigation of the Haag–Swieca compact-
ness condition; a more detailed account of these results will be presented
elsewhere.

Making use of the localization properties of the operators A ∈ R(W )
and the analyticity properties of the scattering function S2, one can show
that the n–particle wave functions

θ1, . . . θn 7→ (AΩ)n(θ1, . . . θn) (3.22)

extend, in the sense of distributions, to analytic functions in the domain
0 < Im θi < π, −δ < Im (θi − θk) < δ, where i, k = 1, . . . n and δ depends on
the domain of analyticity of the scattering function S2. Thus the functions

θ1, . . .θn 7→ (U(0, B(−iπ/2))AΩ)n(θ1, . . . θn)

= (AΩ)n(θ1 + iπ/2, . . . θn + iπ/2)
(3.23)

are analytic in the domain −δ/n < Im θi < δ/n, i = 1, . . . n. As a matter of
fact, if A ∈ R(W )1, the family of these functions turns out to be uniformly
bounded (normal) on this domain. Taking also into account that U is a
representation of the Poincaré group, one obtains for x ∈ W the equality

U(0, B(−iπ/2))U(x, 1)AΩ = ex1P0−x0P1 U(0, B(−iπ/2))AΩ, (3.24)

so the n–particle components of the vectors (3.21) have wave functions of
the form

θ1, . . . θn 7→ (U(0, B(−iπ/2))U(x, 1)AΩ)n(θ1, . . . θn)

= em
∑

n

k=1
(x1 ch(θk) − x0 sh(θk)) (AΩ)n(θ1 + iπ/2, . . . θn + iπ/2).

(3.25)

Since, for x ∈ W , the exponential factor gives rise to a strong damping of
large rapidities, it follows from the preceding results that the wave functions
(3.25) form, for A ∈ R(W )1, a bounded subset of the space of test functions
S(Rn) and hence a nuclear subset of L2(Rn) = Hn. Moreover, taking into
account the spectral properties of (P0, P1), relation (3.24) combined with
the estimate ‖U(0, B(−iπ/2))AΩ‖ ≤ ‖A‖ following from modular theory
implies

‖(U(0, B(−iπ/2))U(x, 1)AΩ)n‖ ≤ en m(x1+|x0|), A ∈ R(W )1. (3.26)

So these norms tend rapidly to 0 for large n ∈ N if x ∈ W . Combining these
facts, one finds after a moments reflection that the sets (3.21) are relatively
compact in H, implying that the maps (3.20) are compact. So they can
be approximated with arbitrary precision by finite sums of maps of rank
one. In order to prove that they are also nuclear, one needs more refined
estimates, however.
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4 An instructive example

In order to illustrate the quantitative estimates needed for the proof that
the map (3.20) is nuclear, we consider here the case of trivial scattering,
S2 = 1, i.e. the theory of a free massive Bose field φ. There the combinatorial
problems appearing in the analysis of the size of sets of the type (3.21) have
been settled in [15] and we shall make use of these results here.

We begin by recalling some well known facts: The restrictions of the field
φ and of its time derivative φ̇ to the time zero plane are operator valued
distributions on the domain D. These time zero fields, commonly denoted
by ϕ and π, satisfy canonical equal time commutation relations. If smeared
with test functions h having support in the interval (−∞, 0), they generate
the von Neumann algebra R(W ) and, applying them to the vacuum vector
Ω, they create closed subspaces Lϕ(W ), Lπ(W ) of the single particle space
H1 given by

Lϕ(W ) = {θ 7→ h̃(m sh(θ)) : supph ⊂ (−∞, 0)}−,

Lπ(W ) = {θ 7→ ch(θ) h̃(m sh(θ)) : supph ⊂ (−∞, 0)}−,
(4.1)

where the tilde denotes Fourier transformation. We also consider the shifted
subspaces Lϕ(W + x)

.
= U(x, 1)Lϕ(W ) and Lπ(W + x)

.
= U(x, 1)Lπ(W )

and denote the corresponding orthogonal projections by Eϕ(W + x) and
Eπ(W + x), respectively. After these preparations we are in a position to
apply the results in [15, Thm. 2.1] which we recall here for the convenience
of the reader in a form appropriate for the present investigation.

Lemma 4.1. Consider the theory with scattering function S2 = 1 and let
Eϕ(W + x)U(0, B(−iπ/2)) and Eπ(W + x)U(0, B(−iπ/2)) be trace class
operators with operator norms less than 1, x ∈ W . Then the sets (3.21) are
nuclear.

Thus the proof that the modular nuclearity condition is satisfied in the
present theory reduces to a problem of spectral analysis in the single particle
space H1. We first turn to the task of providing estimates of the norms of
the operators appearing in the lemma.

Let Φh ∈ Lϕ(W ) be a vector with wave function θ 7→ Φh(θ) = h̃(m sh(θ)),
where h is, as before, a test function with support in (−∞, 0). Because of
these support properties, Φh lies in the domain of all boosts U(0, B(θ)) for
complex θ with −π ≤ Im θ ≤ 0. Furthermore, as sh(θ + iπ) = sh(−θ),
one has (U(0, B(−iπ))Φh)(θ) = h̃(m sh(−θ)) = Φh(−θ). But this implies
‖U(0, B(−iπ))Φh‖ = ‖Φh‖ and consequently ‖U(0, B(−iπ/2))Φh‖ ≤ ‖Φh‖.
Making use now of the properties of the representation U , one obtains the
estimate, x ∈ W ,

‖U(0, B(−iπ/2))U(x, 1)Φh‖ = ‖ex1P0−x0P1 U(0, B(−iπ/2))Φh‖

≤ em(x1+|x0|) ‖U(0, B(−iπ/2))Φh‖ ≤ em(x1+|x0|) ‖U(x, 1)Φh‖.
(4.2)

Since Φh was arbitrary within the above limitations and (x1 + |x0|) is nega-
tive, this yields the norm estimate ‖U(0, B(−iπ/2))Eϕ(W +x)‖ < 1, x ∈ W .
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But the adjoint operator Eϕ(W + x)U(0, B(−iπ/2)) has the same norm, so
the desired bound follows. In a similar manner one can show that the oper-
ator Eπ(W + x)U(0, B(−iπ/2)) also has norm less than 1.

It remains to establish the trace class property of these operators. To
this end we consider the restriction of the operator U(0, B(−iπ/2))U(x, 1),
x ∈ W , to the subspaces Lϕ(W ) and Lπ(W ), respectively. Let, as before,
Φh ∈ Lϕ(W ), then

(U(0, B(−iπ/2))U(x, 1)Φh)(θ) = ex1p0(θ) − x0p1(θ) Φh(θ + iπ/2). (4.3)

Making use of the analyticity and boundedness properties of θ 7→ Φh(θ) and
the fact that Φh(θ + iπ) = Φh(−θ), one can represent Φh(θ + iπ/2) by a
Cauchy integral,

Φh(θ + iπ/2) =
1

2πi

∫
dθ′

{ 1

θ′ − θ − iπ/2
+

1

θ′ + θ − iπ/2

}
Φh(θ′). (4.4)

Next, for x ∈ W , let Xϕ be the operator on H1 with kernel

Xϕ(θ, θ′) =
1

2πi
ex1p0(θ) − x0p1(θ)

{ 1

θ′ − θ − iπ/2
+

1

θ′ + θ − iπ/2

}
. (4.5)

Being the sum of products of multiplication operators in rapidity space,
respectively its dual space, which are bounded and rapidly decreasing, it
is apparent that Xϕ is of trace class. Moreover, by the preceding results,
U(0, B(−iπ/2))Eϕ(W + x) = Xϕ Eϕ(W )U(x, 1)−1. Since the trace class
operators form a *–ideal in B(H1), if follows that U(0, B(−iπ/2))Eϕ(W +x)
and its adjoint Eϕ(W + x)U(0, B(−iπ/2)) are of trace class.

By a similar argument one can also establish the trace class property
of Eπ(W + x)U(0, B(−iπ/2)), the only difference being that for vectors
Φh ∈ Lπ(W ) with wave functions θ 7→ Φh(θ) = ch(θ) h̃(m sh(θ)) one now
has Φh(θ + iπ) = −Φh(−θ). As a consequence, the sum in relation (4.4)
turns into a difference, but this does not affect the conclusions. So the
following statement has been proven.

Proposition 4.2. In the theory with scattering function S2 = 1, the sets
(3.21) and corresponding maps

A 7→ U(0, B(−iπ/2))U(x, 1)AΩ, A ∈ R(W ). (4.6)

are nuclear, x ∈ W .

We thus have verified in the present model the modular nuclearity con-
dition for wedge algebras with all of its consequences. In particular, the
wedge algebras have the split property. Although the latter fact was known
before [29], there did not yet exist a proof in the literature.

By similar arguments one can also treat the theory with scattering func-
tion S2 = −1, i.e. the theory of a (non–local) free massive Fermi field. There
one expects that the sets (3.21) are somewhat smaller than in the present
case because of the Pauli principle. It is even more challenging, however, to
provide a quantitative estimate of the size of the sets (3.21) in theories with
generic scattering function. This problem will be tackled elsewhere.
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5 Conclusions

Within the algebraic setting of quantum field theory, we have presented a
method which allows one to decide whether algebras affiliated with wedge
shaped regions in two–dimensional Minkowski space contain compactly lo-
calized operators. This method seems to be particularly useful for proving
the existence of local operators in theories with factorizing S–matrix. It is
thus complementary to the formfactor program, where one tries to exhibit
such operators explicitly by solving an infinite system of equations.

The upshot of the present investigation is the insight that the basic al-
gebraic problem of checking locality, which amounts to computing relative
commutants, can be replaced by an analysis of spectral properties of repre-
sentations of the Poincaré group. There exist other methods by which the
crucial intermediate step in our argument, the proof of the split property of
wedge algebras, could be accomplished [10,13,16,18,19,30]. But the present
approach requires less a priori information about the underlying theory and
also seems better managable in concrete applications. Moreover, in view
of the fact that it relies only on the modular structure, it is applicable to
theories on arbitrary spacetime manifolds.

It is apparent, however, that the split property of wedge algebras is in
general an unnecessarily strong requirement if one is merely interested in the
existence of compactly localized operators. As a matter of fact, it follows
from an argument of Araki that it cannot hold in more than two spacetime
dimensions, cf. [10, Sec. 2]. It would therefore be desirable to establish less
stringent conditions which still imply that the relative commutant fixed by a
given inclusion of von Neumann algebras is non–trivial. The present results
seem to suggest that this information is encoded in spectral properties of the
corresponding modular operators, but a clarification of this point requires
some further analysis.

An appropriately weakened condition which would allow one to establish
the existence of local operators in non–local algebras also in higher dimen-
sions would have several interesting applications. This existence problem
was recently met in the context of theories of massless particles with in-
finite spin [33], for example. It also appears in the algebraic approach to
the construction of theories of particles with anyonic statistics [32] and the
construction of nets of wedge algebras from information on the modular
data [6, 14, 25, 39, 40]. A solution of this problem would thus be a major
step in the algebraic approach to constructive problems in local quantum
physics.
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